# Curriculum for Certificate Programme In ELECTRICIAN

for

Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab)



Prepared By: Curriculum Development Centre National Institute of Technical Teachers Training and Research, Sector 26, Chandigarh - 160 019

January, 2017

#### FOREWORD

Rapid industrialization and globalization has created an environment for free flow of information and technology through fast and efficient means. This has led to shrinking of the world, bringing people from different culture and environment together and giving rise to the concept of world turning into a global village. In order to cope with the challenges of handling new materials, machines and technologies, we have to develop human resources having appropriate competencies. There is an increasing demand of skilled workforce in India in particular and the world over in general. Under the new circumstances, India faces a challenging task of meeting the technical manpower requirement, especially in the area of skilled workforce to cater to industrial needs. Efforts have to be made so that passouts from our technical institutions are acceptable at global level.

Technical education system is one of the significant components of the human resource development and has grown phenomenally during all these years. Technical institutions play an important role in meeting the requirements of trained technical manpower for industries and field organizations. The initiatives being taken by Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab to start the skill oriented integrated courses at certificate, diploma and degree level, as per the needs of the industry, are laudable.

In order to meet the future requirements of technical manpower, we will have to revamp our existing technical education system and one of the most important requirements is to develop outcome-based curricula of technical programmes at various levels. The curricula for various programmes have been revised by adopting time-tested and nationally acclaimed scientific method, laying emphasis on the identification of learning outcomes of programme and various courses.

The success of any technical programme depends upon its effective implementation. However best the curriculum document is designed, if it is not implemented properly, the output will not be as per expectations. In addition to acquisition of appropriate physical resources, availability of motivated, competent and qualified faculty is equally essential for effective implementation of the curricula.

It is expected that MRSPTU will carry out curriculum evaluation on a continuous basis to identify the new skill requirements. At the same time, it is expected that innovative methods of course offering will be used to develop desired skills and infuse the much needed dynamism in the system.

Dr. M.P. Poonia Director National Institute of Technical Teachers Training & Research Chandigarh

#### PREFACE

Curriculum document is a comprehensive plan of an educational programme. It is through the curriculum that the educational objectives of a programme are achieved. It has to be ensured that the curriculum is dynamic, articulated, balanced, data based, feasible, and as per industrial needs. Curriculum Development Centre at NITTTR, Chandigarh has been extending services to technical education system of the states in northern region in developing and updating their curriculum on regular basis.

Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab assigned the project for developing the curriculum of some integrated programmes to this institute in the month of May 2016. A series of curriculum workshops were held during the months of June-July, 2016. This curriculum document is an outcome of the extensive discussions held with the representatives from various organizations, technical institutions and industry during the curriculum workshops. While developing the study and evaluation scheme and detailed contents, the following aspects have been kept in mind :

- Employment Opportunities of Certificate holders
- Job role of certificate holders
- Learning outcome of the Programme
- Mobility of students for their professional growth

We have taken cognizance of recommendation of experts both from industry and academic institutions and have adequately incorporated segments of Industrial Training in the curriculum. Time has specifically been allocated for undertaking extra-curricular activities. Emphasis has been laid on developing and improving communication skills in the students for which units on Communication Skills have been introduced in both the semesters of the certificate course.

We hope that this curriculum document will prove useful in producing skilled manpower at desired level in the state of Punjab. The success of this outcome-based curriculum depends upon its effective implementation and it is expected that MRSPTU will make all efforts to create better facilities, develop linkages with the world-of-work and foster conducive and requisite learning environment as prescribed in the curriculum document.

> Professor and Head Curriculum Development Centre NITTTR, Chandigarh

#### ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance and guidance received from the following persons:

- i) Vice Chancellor, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bhatinda, Punjab for entrusting this project of curriculum design to NITTTR, Chandigarh.
- ii) Director, College Development Council MRSPTU for his support and active involvement in the curriculum development.
- iii) Director, National Institute of Technical Teachers' Training and Research, Chandigarh for his support and academic freedom provided to Curriculum Development Centre.
- iv) All the experts from industry/field organizations, universities, ITIs and other technical institutions for their professional inputs during curriculum workshops.
- v) Faculty from different departments of NITTTR, Chandigarh for content updation.
- vi) Shri Yogendra Kaushal, Stenographer, Curriculum Development Centre, NITTTR, Chandigarh for processing the document.
- vii) Shri Mohan Lal Bindal, Assistant, Curriculum Development Centre for his support and secretarial assistance in the conduct of curriculum design workshops.

Coordinator

| 1. | Sector                               | : | Power & Energy                                                           |
|----|--------------------------------------|---|--------------------------------------------------------------------------|
| 2. | Name of the Certificate<br>Programme | : | Electrician                                                              |
| 3. | Entry Qualification                  | : | Matriculation or equivalent NSQF Level as prescribed by MRSPTU, Bathinda |
| 4. | Duration of the Programme            | : | One Year                                                                 |
| 5. | Intake                               | : | 30                                                                       |
| 6. | Pattern of the Programme             | : | Semester Pattern                                                         |
| 7. | NSQF Level                           | : | Level - III                                                              |

## 1. SALIENT FEATURES OF THE PROGRAMME

#### 2. JOB ROLE AND JOB OPPORTUNITIES

## a) Job Role

A certificate holder in Electrician is responsible for wiring, servicing, testing, repair and maintenance of general electrical appliances and control instruments by identifying faulty parts.

#### **b)** Job Opportunities

On successful completion of this course, the students will be gainfully employed in the following areas:

- i) Various electrical appliances manufacturing industry.
- ii) Maintenance section of Govt. organizations/private/public sector.
- iii) Work as certified electrician.
- iv) Self employed.

## 3. LEARNING OUTCOMES OF THE PROGRAMME

After undergoing the programme, students will be able to:

- 1. Draw and interpret D.C. and A.C. circuits
- 2. Use different types of electrical tools and measuring instruments
- 3. Identify and rectify different types of faults in electrical equipments/appliances
- 4. Install and test different types of domestic and industrial wiring circuits
- 5. Maintain and troubleshoot electrical machines and starters
- 6. Perform and test winding for electrical machines
- 7. Apply basic principles of math and physics in solving trade problems
- 8. Communicate effectively in English with others
- 9. Describe the characteristics/properties and uses of material related to the trade

#### 4. STUDY AND EVALUATION SCHEME FOR CERTIFICATE PROGRAMME IN ELECTRICIAN

#### FIRST SEMESTER

| CODE       | UNITS                                                         | STU     |     | ME E - |     | MA             | RKS IN | EVALU | JATION | SCHEN            | ΛE  |     | Total<br>Marks |
|------------|---------------------------------------------------------------|---------|-----|--------|-----|----------------|--------|-------|--------|------------------|-----|-----|----------------|
|            |                                                               | Total 1 |     |        |     | TERNA<br>ESSME |        |       |        | XTERN.<br>SESSMI |     |     | IVIALKS        |
|            |                                                               | Th      | Pr  | C      | Th  | Pr             | Tot    | Th    | Hrs    | Pr               | Hrs | Tot |                |
| CELE11-101 | *Communication Skills                                         | 8       | -   | 1      | 25  | -              | 25     | 25    | 1      | -                | -   | 25  | 50             |
| CELE1-101P | *Communication Skills Lab.                                    | -       | 24  | 1      | -   | 50             | 50     | -     | -      | 75               | 3   | 75  | 125            |
| CELE1-102  | Engineering Drawing<br>(Electrician)                          | -       | -   | 1      | -   | -              | -      | 75    | 3      | -                | -   | 75  | 75             |
| CELE1-102P | Engineering Drawing<br>(Electrician) Lab.                     | -       | 48  | 1      | -   | 50             | 50     | -     | -      | -                | -   | -   | 50             |
| CELE1-103  | Basic Electricity                                             | 32      | -   | 2      | 25  | -              | 25     | 50    | 2      | -                | -   | 50  | 75             |
| CELE1-103P | Basic Electricity Lab.                                        | -       | 128 | 4      | -   | 75             | 75     | -     | -      | 100              | 4   | 100 | 175            |
| CELE1-104  | Electrical Measuring<br>Instruments                           | 16      | -   | 1      | 25  | -              | 25     | 25    | 1      | -                | -   | 25  | 50             |
| CELE1-104P | Electrical Measuring<br>Instruments Lab.                      | -       | 80  | 3      | -   | 50             | 50     | -     | -      | 100              | 4   | 100 | 150            |
| CELE1-105  | Electrical Machines - I                                       | 48      | -   | 3      | 25  | -              | 25     | 50    | 2      | -                | -   | 50  | 75             |
| CELE1-105P | Electrical Machines – I Lab.                                  | -       | 128 | 4      | -   | 75             | 75     | -     | -      | 100              | 4   | 100 | 175            |
| CELE1-106P | #Student Centred Activities<br>(SCA)                          | -       | 48  | 2      | -   | 25             | 25     | -     | -      | -                | -   | -   | 25             |
| CELE1-107P | <sup>+</sup> 4 Weeks Industrial Training<br>(during vacation) | -       | -   | 4      | -   | -              | -      | -     | -      | 100              | 3   | 100 | 100            |
|            | Total                                                         | 104     | 456 | 27     | 100 | 325            | 425    | 225   | -      | 475              | -   | 700 | 1125           |

\* Common with other certificate programmes

# SCA will comprise of co-curricular activities like extension lectures on entrepreneurship, environment and energy conservation, sports, hobby clubs e.g. photography etc., seminars, declamation contests, educational field visits, N.C.C., NSS, Cultural Activities etc.

#### + Industrial Training

After examination of 1<sup>st</sup> Semester, the students will go for training during vacation in a relevant industry/field organization for a minimum period of 4weeks and will prepare a diary. The students will prepare a report at the end of training and will present

it in a seminar. This evaluation will be done by concerned instructor in the presence of one industrial representative from the related programme/trade.

```
Total weeks per semester = 16Total working days per week = 5Total hours per day = 7
```

Total Hours in a semester =  $16 \times 5 \times 7 = 560$ 

One credit is defined as one hour of lecture per week or two hours of practicals per week for one semester. Fractions in credits have been rounded to nearest integer.

#### SECOND SEMESTER

| CODE           | UNITS                                                      |         | STUDY<br>SCHEME |    |     | MA             | RKS IN | EVALU | JATION | SCHEN            | ΛE  |     | Total<br>Marks |
|----------------|------------------------------------------------------------|---------|-----------------|----|-----|----------------|--------|-------|--------|------------------|-----|-----|----------------|
|                |                                                            | Total ] |                 |    |     | FERNA<br>ESSME |        |       |        | XTERN.<br>SESSMI |     |     | Warks          |
|                |                                                            | Th      | Pr              | D  | Th  | Pr             | Tot    | Th    | Hrs    | Pr               | Hrs | Tot |                |
| CELE1-208      | *Basic Sciences                                            | 48      | -               | 3  | 25  | -              | 25     | 50    | 2      | -                | -   | 50  | 75             |
| CELE1-209      | Repair and Maintenance of<br>Electrical Installations      | 32      | -               | 2  | 25  | -              | 25     | 50    | 2      | -                | -   | 50  | 75             |
| CELE1-<br>209P | Repair and Maintenance of<br>Electrical Installations Lab. | -       | 128             | 4  | -   | 75             | 75     | -     | -      | 100              | 4   | 100 | 175            |
| CELE1-210      | Electrical Machines - II                                   | 48      | -               | 3  | 25  | -              | 25     | 50    | 2      | -                | -   | 50  | 75             |
| CELE1-<br>210P | Electrical Machines – II Lab.                              | -       | 128             | 4  | -   | 75             | 75     | -     | -      | 100              | 4   | 100 | 175            |
| CELE1-211      | Electrical Controls and<br>Switchgears                     | 32      | -               | 2  | 25  | -              | 25     | 50    | 2      | -                | -   | 50  | 75             |
| CELE1-<br>211P | Electrical Controls and<br>Switchgears Lab.                | -       | 96              | 3  | -   | 50             | 50     | -     | -      | 100              | 4   | 100 | 150            |
| CELE1-<br>212P | #Student Centred Activities<br>(SCA)                       | -       | 48              | 2  | -   | 25             | 25     | -     | -      | -                | -   | -   | 25             |
| CELE1-<br>213P | <sup>+</sup> 4 Weeks Industrial Training                   | -       | -               | 4  | -   | -              | -      | -     | -      | 100              | 3   | 100 | 100            |
|                | Total                                                      | 160     | 400             | 27 | 100 | 225            | 325    | 200   | -      | 400              | -   | 600 | 925            |

\* Common with other certificate programmes

# SCA will comprise of co-curricular activities like extension lectures on entrepreneurship, environment and energy conservation, sports, hobby clubs e.g. photography etc., seminars, declamation contests, educational field visits, N.C.C., NSS, Cultural Activities etc.

#### + Industrial Training

After examination of  $2^{nd}$  Semester, the students will go for training during vacation in a relevant industry/field organization for a minimum period of 4 weeks and will prepare a diary. The students will prepare a report at the end of training and will present it in a seminar. This evaluation will be done by concerned instructor in the presence of one industrial representative from the related programme/trade.

## 5. GUIDELINES FOR ASSESSMENT OF STUDENT CENTRED ACTIVITIES (SCA)

It was discussed and decided that the maximum marks for SCA should be 25 as it involves a lot of subjectivity in the evaluation. The marks may be distributed as follows:

- i. 5 Marks for general behavior and discipline(by Principal in consultation with all the trainers)
- ii. 5 Marks for attendance as per following:
  - (by the trainers of the department)
    - a) 75% Nil
    - b) 75 80% 2 Marks
    - c) 80 85% 3 Marks
    - d) Above 85% 5 Marks
- iii. 15 Marks maximum for Sports/NCC/Cultural/Co-curricular/ NSS activities as per following:

(by In-charge Sports/NCC/Cultural/Co-curricular/NSS)

- a) 15 National Level participation or inter-University competition
  b) 10 - Participation in two of above activities
  c) 5 - Participation in internal sports of the
  - University
- Note: There should be no marks for attendance in the internal sessional of different subjects.

#### UNIT – 1.1 SUBJECT CODE: CELE1-101 COMMUNICATION SKILLS

# **LEARNING OUTCOMES:**

- After undergoing this unit, the students will be able to:
  - Speak confidently.
  - Overcome communication barriers.
  - Write legibly and effectively.
  - Listen in proper prospective.
  - Read various genres adopting different reading techniques.
  - Respond to telephone calls effectively.

| Practical | l (24 Hours)                                                                          |                                                                                                                                                                                                                                                                             | (08 Hours)                         |
|-----------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|           |                                                                                       | <ul> <li>Basics of Communication</li> <li>Process of communication</li> <li>Types of communication -<br/>informal, oral and written,<br/>non-verbal</li> <li>Objectives of communication</li> <li>Essentials of communication</li> <li>Barriers to communication</li> </ul> | verbal and                         |
|           | ing up words in a dictionary<br>ning and pronunciation)<br>(2 hours)                  | • Parts of speech                                                                                                                                                                                                                                                           | ılary                              |
|           | nd peer introduction<br>ings for different occasions<br>(1 hour)                      | <ul> <li>Listening</li> <li>Meaning and process of liste</li> <li>Importance of listening</li> <li>Methods to improve listening<br/>Speaking</li> <li>Importance</li> <li>Methods to improve speaking</li> <li>Manners and etiquettes</li> </ul>                            | g skills                           |
| • News    | paper reading (1 hour)                                                                | <ul> <li>Reading</li> <li>Meaning</li> <li>Techniques of reading:<br/>scanning, intensive and<br/>reading</li> </ul>                                                                                                                                                        | skimming,<br>extensive<br>(1 hour) |
| exerc     | bulary enrichment and grammatises<br>ises on sentence framing accurately<br>(6 hours) | <ul><li>One-word substitution</li><li>Commonly used words</li></ul>                                                                                                                                                                                                         |                                    |

| • Reading aloud articles and essays on current and social issues |  |
|------------------------------------------------------------------|--|
| Comprehension of short paragraph                                 |  |
| (5 hours)                                                        |  |
| Write a short technical report                                   |  |
| Letter writing                                                   |  |
| (3 hours)                                                        |  |
| Participate in oral discussion                                   |  |
| • Respond to telephonic calls effectively                        |  |
| Mock interview                                                   |  |
| (6 hours)                                                        |  |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Viva-voce

#### UNIT - 1.2 SUBJECT CODE: CELE1-102 ENGINEERING DRAWING (ELECTRICIAN)

## **LEARNING OUTCOME:**

After undergoing this unit, the students will be able to:

- Identify and use engineering drawing materials and instruments.
- Prepare free hand sketches of electrical tools and instruments.
- Identify and use symbols of various electrical devices.
- Read and interpret electrical installation plans.
- Read and draw wiring diagrams of electrical installations, bell circuits etc.
- Read diagrams of MDB, ELCB, MCB.

| D. | • Read diagrams of MDD, ELCD, Web           |        |
|----|---------------------------------------------|--------|
| Pr | actical (48 hours)                          | Theory |
| •  | Introduction to engineering drawing         |        |
|    | instruments, materials, drawing board and   |        |
|    | drawing sheets                              |        |
|    | (3 hours)                                   |        |
| •  | Different types of lines in engineering     |        |
|    | drawing as per BIS                          |        |
|    | (3 hours)                                   |        |
| •  | Free hand sketching of electrical tools     |        |
|    | and instruments                             |        |
|    | (6 hours)                                   |        |
| •  | Scales of drawings                          |        |
|    | (2 hours)                                   |        |
| •  | Symbols used in electrical installations as |        |
|    | per BIS                                     |        |
|    | (6 hours)                                   |        |
| •  | Drawing of fuse, MCB, ELCB, MDB,            |        |
|    | insulators                                  |        |
|    | (8 hours)                                   |        |
| •  | Wiring diagrams of electrical installations |        |
|    | (10 hours)                                  |        |
| •  | Wiring diagram of bell circuits and         |        |
|    | staircase                                   |        |
|    | (10 hours)                                  |        |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Viva-voce
- Sketching
- Drawing

## UNIT – 1.3 SUBJECT CODE: CELE1-103 BASIC ELECTRICITY

#### **LEARNING OUTCOME:**

After undergoing this unit, the students will be able to:

- Explain concepts of basic electricity terms
- Implement safety and preventive measures
- Identify and utilize various electrical accessories
- Identify and use symbols of electricity
- Draw and connect basic electrical circuits
- Calculate various electrical parameters

| Calculate various electron                                                                                                                                                                                                                 | circar parameters                                                                                    |                                                                                                                                                      |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Practical                                                                                                                                                                                                                                  | (128 hours)                                                                                          | ) Theory                                                                                                                                             | (32 hours)                                                              |
| <ul> <li>Demonstration of safety injury prevention, artificiand use of fire extinguish</li> <li>Practice of using autting</li> </ul>                                                                                                       | al respiration<br>er.<br>(24 hours)                                                                  | <ul> <li>Care and safety working h<br/>fire extinguishers and usate<br/>to Indian Electricity Rules</li> <li>Define electricity terms (v)</li> </ul> | ge. Introduction<br>s (8 hours)                                         |
| Practice of using cutting<br>drivers etc. Skinning cab<br>practice of single strands<br>conductors. Practice of b<br>joints like britannia, strai<br>union joints. Practice of u<br>micrometer, crimping too<br>etc. Practice of soldering | les and jointing<br>/multi strand<br>are conductor<br>ght, T, western<br>using<br>ol, thimbles, lugs | power) and symbols in ele<br>Explanation and definition<br>insulators and semi-condu<br>wires/cables, joints and th<br>flux and brazing technique    | ectricity.<br>n of conductors,<br>actors. Types of<br>eir uses. Solder, |
| • Demonstration of electric<br>e.g. switches, sockets, ho<br>MCB, ELCB, MCCB etc                                                                                                                                                           | lders, plugs,                                                                                        | • Introduction to electrical a                                                                                                                       | accessories<br>(6 hours)                                                |
| • Verification of Ohm's La electrical energy. Verific series, parallel and comb                                                                                                                                                            | ation of laws of                                                                                     |                                                                                                                                                      | parallel and (8 hours)                                                  |
|                                                                                                                                                                                                                                            |                                                                                                      | Basic properties of materi<br>electrical conductors, insu<br>electric devices like RLC,                                                              | lators and                                                              |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Viva-voce

## UNIT- 1.4 SUBJECT CODE: CELE1-104 ELECTRICAL MEASURING INSTRUMENTS

#### **LEARNING OUTCOME:**

After undergoing this unit, the students will be able to:

- Explain working principle of different measuring instruments
- Identify and use different measuring instruments
- Use various safety measures
- Connect the circuits as per given specifications
- Differentiate between AC and DC supply

| Pr | actical (80 hours                                                                                                                                  | Theory                 | (16 hours)                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| •  | Measure voltage, current, resistance and<br>power using ammeter and voltmeter<br>(10 hours)                                                        | amm                    | king principle of analog and digital<br>neter and voltmeter, their connections<br>safety measures to be taken during<br>(2 hours)                      |
| •  | Identify different types of measuring<br>instruments and their connectors<br>(10 hours)                                                            | <ul><li>Defl</li></ul> | es of instruments (indicating,<br>rding, integrating and effects based)<br>(2 hours)<br>ecting torque, controlling torque,<br>ping torque<br>(2 hours) |
| •  | Measure insulation value of different<br>cables using insulation tests<br>(10 hours                                                                | teste                  | king of insulation tester and earth<br>er, safety measures to be taken during<br>of instruments<br>(1 hour)                                            |
| •  | Measure value of different resistors using<br>multimeter and also note down their<br>voltage and current variation in tabular<br>form<br>(10 hours | mult<br>frequ          | timeter – Principle of digital<br>imeter, study their different controls,<br>uently occurring problems in digital<br>imeter<br>(2 hours)               |
| •  | Measure power factor in polyphase<br>circuit using voltmeter, ammeter and<br>wattmeter<br>(10 hours)                                               |                        | ne power factor, working principle of<br>er factor meter and their connections<br>(2 hours)                                                            |
| •  | Perform the connections of 3 phase<br>energy meter (10 hours)                                                                                      | phas<br>conn           | king principle of 3 phase and single<br>the digital energy meter, their<br>function diagrams and errors during<br>zation (2 hours)                     |

| • | Measure speed of motor using tachometer (7 hours) | • | Working of tachometer, analog and digital tachometer |
|---|---------------------------------------------------|---|------------------------------------------------------|
|   | × /                                               |   | (1 hour)                                             |
| • | Measure power of inductor using                   | • | Working principle of wattmeter and connections       |
|   | wattmeter                                         |   | connections                                          |
|   | (7 hours                                          |   | (1 hour)                                             |
| • | Measuring intensity of various light              | • | Working of lux meter                                 |
|   | sources using lux meter                           |   | (1 hour)                                             |
|   | (6 hours)                                         |   |                                                      |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Viva-voce

#### UNIT - 1.5 SUBJECT CODE: CELE1-105 ELECTRICAL MACHINES - I

## **LEARNING OUTCOME:**

After undergoing this unit, the students will be able to:

- Identify various A.C. and D.C. electrical machines
- Identify and use various A.C. motors, D.C. motors and transformers
- Identify and utilize various instrument transformers like C.T./P.T.
- Assemble and dissemble small A.C. and D.C. motors, single phase transformers
- Identify and rectify general faults in electrical machines

| Practical (128 hours)                      | Theory (48 hours)                            |
|--------------------------------------------|----------------------------------------------|
| • Identification of parts of D.C. machine  | General concept of electrical machines       |
| (12 hours)                                 | (5 hours)                                    |
| • Connection of shunt generators. Voltage  | • Principle of D.C. generator, parts of D.C. |
| build-up in D.C. generator                 | generator                                    |
| (20 hours)                                 | (5 hours)                                    |
| • Identification of parts and terminals of | • Terms used in D.C. motors, types of D.C.   |
| D.C. motors.                               | motors                                       |
| (12 hours)                                 | (5 hours)                                    |
| • Practical application of D.C. motors and | • Starters used in D.C. motors               |
| their uses                                 | (15 hours)                                   |
| (28 hours)                                 | • Principles and working of transformers.    |
| • Identification of types of transformers  | 1\phi and 3\phi transformers                 |
| • (20 hours)                               | (8 hours)                                    |
| • Demonstration of current and potential   | • Construction of transformers, dehydration  |
| transformers, testing of transformer oil   | and oil testing of transformer oil           |
| (20 hours)                                 | (4 hours)                                    |
| • Care and maintenance of transformers     | • Construction of instrument transformers    |
| (16 hours)                                 | like C.T./P.T.                               |
|                                            | (6 hours)                                    |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Viva-voce

#### SUBJECT CODE: CELE1-107 INDUSTRIAL TRAINING – I (4 Weeks)

The purpose of industrial training is to:

- Develop understanding regarding the size and scale of operations and nature of industrial/field work in which students are going to play their role after completing the courses of study.
- Develop confidence amongst the students through firsthand experience to enable them to use and apply institute based knowledge and skills to perform field activities
- Develop special skills and abilities like interpersonal skills, communication skills, attitudes and values.

It is needless to emphasize further the importance of Industrial Training of students during their one-year certificate programme. It is industrial training, which provides an opportunity to students to experience the environment and culture of world of work. It prepares students for their future role as skilled person in the world of work and enables them to integrate theory with practice.

An external assessment of 100 marks have been provided in the study and evaluation scheme of 1<sup>st</sup> semester. Evaluation of professional industrial training report through viva-voce/presentation aims at assessing students understanding of materials, industrial process, practices in industry/field organization and their ability to engage in activities related to problem solving in industrial setup as well as understanding of application of knowledge and skills learnt in real life situations.

The instructor along with one industrial representative from the concerned trade will conduct performance assessment of students. The components of evaluation will include the following:

| a) | Punctuality and regularity | 20% |
|----|----------------------------|-----|
| b) | Industrial training report | 50% |

c) Presentation and viva-voce 30%

#### UNIT – 2.1 SUBJECT CODE: CELE1-208 BASIC SCIENCES

# **LEARNING OUTCOMES:**

After undergoing this unit, the students will be able to:

- Apply the basic principles of maths in solving the basic problems of the trade.
- Apply the basic principles of physics in solving the basic problems of the trade.

| Practical | Theory(48 Hours)                                                                                                                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Mathematics                                                                                                                                                                             |
|           | <ul> <li>Basic Algebra – algebraic formula.<br/>Simultaneous equation – quadratic<br/>equations         (4 hours)</li> </ul>                                                            |
|           | • Simultaneous linear equation in two variables                                                                                                                                         |
|           | <ul> <li>(3 hours)</li> <li>Arithmetic and geometric progression,<br/>sum of n-terms, simple calculations.</li> <li>(3 hours)</li> </ul>                                                |
|           | <ul> <li>Mensuration – Find the area of regular<br/>objects like triangle, rectangle, square<br/>and circle; volumes of cube, cuboid,<br/>sphere cylinder</li> <li>(6 hours)</li> </ul> |
|           | <ul> <li>Trigonometry - Concept of angle,<br/>measurement of angle in degrees, grades<br/>and radians and their conversions, T-<br/>Ratios of Allied angles (3 hrs)</li> </ul>          |
|           | • Co-ordinate Geometry - Cartesian and polar coordinates, conversion from cartesian to polar coordinates (2 hrs)                                                                        |
|           | • Concept of Differentiation and Integration (3 hrs)                                                                                                                                    |

| Physics                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • FPS, CGS, SI units, dimensions and conversions                                                                                                                          |
| (2 hours)                                                                                                                                                                 |
| • Force, speed, velocity and acCELE1ration – Definition, units and simple problems                                                                                        |
| (3 hours)                                                                                                                                                                 |
| • Stress and strain, modulus of elasticity (2 hours)                                                                                                                      |
| • Heat and temperature, its units and specific heat of solids, liquids and gases (4 hours)                                                                                |
| • Electricity and its uses, basic electricity terms and their units, D.C. and A.C., positive and negative terminals, use of switches and fuses, conductors and insulators |
| (5 hours)                                                                                                                                                                 |
| • Work, Power and Energy-Definition, units and simple problems                                                                                                            |
| (4 hours)                                                                                                                                                                 |
| • Concept of force, Inertia, Newton's First<br>law of motion; momentum and Newton's<br>second law of motion; Impulse;<br>Newton's third law of motion.                    |
| (2 hrs)                                                                                                                                                                   |
| • Friction and Lubrication (1 hour)                                                                                                                                       |
| (1 hour)                                                                                                                                                                  |
| • Law of conservation of energy (1 hour)                                                                                                                                  |
| (1 11001)                                                                                                                                                                 |

- •
- Assignments and quiz/class tests Mid-term and end-term written tests •
- Model/prototype making •

#### **UNIT - 2.2 SUBJECT CODE: CELE1-209 REPAIR AND MAINTENANCE OF ELECTRICAL INSTALLATIONS**

#### **LEARNING OUTCOMES:**

After undergoing this unit, the students will be able to:

- Identify various types of electrical installations and appliances •
- Carry out trouble shooting and repair common faults in the electrical installations •
- Install wiring of any building
- Install wiring for single and three phase motor connections
- Measure the earth resistance
- Carry out earthing and maintain it
- Install batteries and carry out maintenance of batteries
- Perform general repair and maintenance of domestic appliances •
- Identify and use various types of luminaries

| Pra | actical (128 hours)                                                                     | Theory (32 hours)                                                                                 |
|-----|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Do  | mestic and Industrial Wiring                                                            | Domestic and Industrial Wiring                                                                    |
| •   | Lab. or live project based wiring exercise.                                             | • Different types of domestic wiring                                                              |
|     | Making students familiar with selection                                                 | • Types of switches/sockets/MCB/ELCB                                                              |
|     | of various items required                                                               | <ul> <li>Types of wires/cables/sizes</li> </ul>                                                   |
| •   | Live/lab. Project on UPS/inverter wiring                                                | • Types of panels/distribution boards                                                             |
| •   | Termination of wires/cables on bus bar<br>and motors using thimbles and cable<br>glands | • Testing of wiring like continuity,<br>insulation resistance, polarity testing etc.<br>(8 hours) |
| •   | Electric load calculation                                                               |                                                                                                   |
|     | (20 hours)                                                                              | Earthing                                                                                          |
| Ea  | rthing                                                                                  | • Types of earthing                                                                               |
| •   | Practice on measurement of earth                                                        | • Need of earthing                                                                                |
|     | resistance                                                                              | • Measurement of earth resistance, study of                                                       |
| •   | Practice on maintenance of earthing/                                                    | earth tester                                                                                      |
|     | earthing pit                                                                            | Maintenance of earthing                                                                           |
| •   | Practice on carrying out earthing                                                       | (4 hours)                                                                                         |
|     | (24 hours)                                                                              | Cell/Battery                                                                                      |
|     |                                                                                         | • Types of batteries, battery charging, series/parallel connection                                |
| Ce  | ll/Battery                                                                              | • Care and maintenance of lead acid battery                                                       |
| •   | Practical exercise of battery connection                                                | (4 hours)                                                                                         |
| •   | Practical exercise on battery charging and                                              |                                                                                                   |
|     | maintenance                                                                             | Domestic Appliances                                                                               |
|     | (28 hours)                                                                              | Introduction to concept and types of various domestic appliances:                                 |
| Do  | mestic Appliances                                                                       | • Washing machine – types                                                                         |
| Re  | pair and maintenance of following:                                                      | • Fan – types/working                                                                             |
| •   | Washing machine                                                                         | • Electric iron – types and working                                                               |
| •   | Immersion rod                                                                           | • Inverter - concept of wiring                                                                    |
| •   | Hot plate                                                                               | <ul> <li>Desert cooler connection</li> </ul>                                                      |
| •   | Geyser – gas/electric                                                                   | Water pump                                                                                        |
| •   | Electric oven                                                                           | • Mixer/grinder                                                                                   |

| <ul><li>Hair drier</li><li>Fans</li></ul>     | <ul><li>Immersion rod</li><li>Hot plate</li></ul> |
|-----------------------------------------------|---------------------------------------------------|
| <ul> <li>Electric iron</li> </ul>             | Electric oven                                     |
| Microwave oven                                | Microwave oven                                    |
| • Inverter                                    | • Hair drier                                      |
| • Air cooler/water cooler/AC/Refrigerator     | • Electric toaster                                |
| connection                                    | Induction heating                                 |
| Mixer grinder                                 | (8 hours)                                         |
| • Water pump                                  | Luminaries                                        |
| Sandwich toaster                              | • Introduction of various types of                |
| RO installation/repair                        | luminaries being used such as sodium,             |
| (32 hours)                                    | mercury, LED, CFL etc.                            |
| Luminaries                                    | Connections of commonly used                      |
| Practical exercises on connections of various | luminaries such as sodium vapour,                 |
| types of luminaries like:                     | mercury vapour, tube light, metal halide          |
| • Single tube                                 | lamps, LED, CFL etc.                              |
| Double tube                                   | • Single and double tube fluorescent lamp         |
| Sodium vapour                                 | fitting connections                               |
| Mercury vapour                                | (8 hours)                                         |
| Neon lamps                                    |                                                   |
| Halogen lamps                                 |                                                   |
| Metal halides                                 |                                                   |
| • CFL, LED etc.                               |                                                   |
| (24 hours)                                    |                                                   |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Model/prototype making
- Viva-voce
- Software installation and operation

| UNIT -                                                                                                                                                                                                                       | 2.3                                                                                                                                                                                                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SUBJECT CODE: CELE1-210                                                                                                                                                                                                      |                                                                                                                                                                                                                            |  |
| <b>ELECTRICAL MACHINES - II</b>                                                                                                                                                                                              |                                                                                                                                                                                                                            |  |
| LEARNING OUTCOME:                                                                                                                                                                                                            |                                                                                                                                                                                                                            |  |
| After undergoing this unit, students will be able                                                                                                                                                                            | e to:                                                                                                                                                                                                                      |  |
| • Identify various AC motors, alternators                                                                                                                                                                                    |                                                                                                                                                                                                                            |  |
| • Identify and utilize tools and instrument                                                                                                                                                                                  | s required for winding.                                                                                                                                                                                                    |  |
| • Use various AC motors and AC motor s                                                                                                                                                                                       | tarters                                                                                                                                                                                                                    |  |
| • Use alternator for practical needs                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |
| • Identify various winding material                                                                                                                                                                                          |                                                                                                                                                                                                                            |  |
| • Wind and rewind small AC/DC motors                                                                                                                                                                                         | and transformers                                                                                                                                                                                                           |  |
| Practical (128 hrs)                                                                                                                                                                                                          | Theory (48 hrs)                                                                                                                                                                                                            |  |
| • Identification of parts of various single phase and 3 phase AC motors (20 hrs)                                                                                                                                             | • Theory of single phase and 3 phase<br>AC motors, construction, working<br>and details of these motors<br>(8 hrs)                                                                                                         |  |
| • Practice on running on various starters like DOL, star delta, (20 hrs)                                                                                                                                                     | • Study of various starters used in 3 phase motors like DOL, start delta (8 hrs)                                                                                                                                           |  |
| • Speed control and practical application of AC motors like squirrel cage, slip ring, synchronous motor, single phase motors-capacitor motors, universal motors, split phase motors, over-hauling of AC motors etc. (30 hrs) | • Care and maintenance of single<br>phase and 3 phase synchronous<br>motors. Theory of working and<br>diagram of various single phase<br>motors like capacitor motor,<br>universal motor and split phase<br>motor (12 hrs) |  |
| • Identification of parts and terminals of alternator. Connection for starting, and running of alternator. (20 hrs)                                                                                                          | • Various parts of alternator (8 hrs)                                                                                                                                                                                      |  |
| <ul> <li>Practice on winding of small AC motors<br/>like ceiling fan and single phase<br/>transformers.</li> <li>(38 hrs)</li> </ul>                                                                                         | • Material used in electrical machine<br>winding. Theory of winding<br>material used in winding purposes.<br>Single phase motor and transformer<br>winding techniques.<br>(12 hrs)                                         |  |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Model/prototype making
- Viva-voce
- Assembly and disassembly

#### UNIT - 2.4 SUBJECT CODE: CELE1-211 ELECTRICAL CONTROL AND SWITCHGEARS

#### **LEARNING OUTCOME:**

After undergoing this unit, students will be able to:

- Select and use switching devices
- Identify and use various types of fuse
- Identify and draw control circuit
- Identify ELCB, MCB and their utilization and installation
- Identify and utilize various tools and control instruments

| Pr | actical                                                                                                 | ( 96 hrs)                         |                                                                                                                                                                                                                         |
|----|---------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •  | Demonstration of switchgear<br>Electrical connection diagram<br>isolator and circuit breaker            | (8 hrs)<br>of switch,<br>(10 hrs) | <ul> <li>Introduction to switchgear, difference between switch, isolator and circuit breaker         <ul> <li>(2 hrs)</li> </ul> </li> <li>Concept of fuse, switch unit         <ul> <li>(2 hrs)</li> </ul> </li> </ul> |
| •  | Demonstration and study of var<br>of fuses, testing of fuses                                            | ious type<br>(10 hrs)             | • Fuse and its purpose, types of fuse<br>and their application<br>(4 hrs)                                                                                                                                               |
| •  | Practice of making electrical of M.C.B.; E.L.C.B.; installations                                        | M.C.C.B.<br>(12 hrs)              |                                                                                                                                                                                                                         |
| •  | Testing of M.C.B. and E.L.C.B circuit breakers                                                          | and other (10 hrs)                | • Study of different circuit breakers<br>(ACB, VCB, OCB, MCCB) and<br>lightening arresters (6 hrs)                                                                                                                      |
| •  | Demonstration and study of con<br>and power circuit of D.O.L. star                                      |                                   | control circuits and power circuit                                                                                                                                                                                      |
| •  | Demonstration and study of cor<br>and power circuit of star delta s                                     |                                   | • Application of contactor control circuit (6 hrs)                                                                                                                                                                      |
| •  | Demonstration and study of rev<br>direction of three phase induction<br>using contactor control circuit | versing the on motor              |                                                                                                                                                                                                                         |
| •  | Demonstration of remote contro<br>three phase induction motor<br>Study and demonstration of over        | (8 hrs)                           |                                                                                                                                                                                                                         |
|    | Study and demonstration of ove                                                                          | (10 hrs)                          |                                                                                                                                                                                                                         |

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Model/prototype making
- Viva-voce
- Assembly and disassembly

#### SUBJECT CODE: CELE1-213 INDUSTRIAL TRAINING – II (4 Weeks)

The purpose of industrial training is to:

- Develop understanding regarding the size and scale of operations and nature of industrial/field work in which students are going to play their role after completing the courses of study.
- Develop confidence amongst the students through firsthand experience to enable them to use and apply institute based knowledge and skills to perform field activities
- Develop special skills and abilities like interpersonal skills, communication skills, attitudes and values.

It is needless to emphasize further the importance of Industrial Training of students during their one-year certificate programme. It is industrial training, which provides an opportunity to students to experience the environment and culture of world of work. It prepares students for their future role as skilled person in the world of work and enables them to integrate theory with practice.

An external assessment of 100 marks have been provided in the study and evaluation scheme of  $2^{nd}$  semester. Evaluation of professional industrial training report through viva-voce/presentation aims at assessing students understanding of materials, industrial process, practices in industry/field organization and their ability to engage in activities related to problem solving in industrial setup as well as understanding of application of knowledge and skills learnt in real life situations.

The instructor along with one industrial representative from the concerned trade will conduct performance assessment of students. The components of evaluation will include the following:

50%

- a) Punctuality and regularity 20%
- b) Industrial training report
- c) Presentation and viva-voce 30%

# 7. **RESOURCE REQUIREMENT**

# 7.1 LIST OF TOOLS/EQUIPMENT

## a) TRAINEES TOOL KIT FOR 30 TRAINEES +1 INSTRUCTOR

| Sr. No. | Names of the Items                                                     | Quantity |
|---------|------------------------------------------------------------------------|----------|
| 1.      | Steel Tape, 15 m length                                                | 31 Nos.  |
| 2.      | Plier Insulated, 150 mm                                                | 31 Nos.  |
| 3.      | Plier Side Cutting, 150 mm                                             | 31 Nos.  |
| 4.      | Screw Driver, 100 mm                                                   | 31 Nos.  |
| 5.      | Screw Driver, 150 mm                                                   | 31 Nos.  |
| 6.      | Electrician Connector, screw driver insulated handle thin stem, 100 mm | 31 Nos.  |
| 7.      | Heavy Duty Screw Driver, 200 mm                                        | 31 Nos.  |
| 8.      | Electrician Screw Driver thin stem insulated handle, 250 mm            | 31 Nos.  |
| 9.      | Punch Centre, 150 mm X 9 mm                                            | 31 Nos.  |
| 10.     | Knife Double Bladed Electrician                                        | 31 Nos.  |
| 11.     | Neon Tester                                                            | 31 Nos.  |
| 12.     | Steel Rule 300 mm                                                      | 31 Nos.  |
| 13.     | Hammer, cross peen with handle                                         | 31 Nos.  |
| 14.     | Hammer, ball peen With handle                                          | 31 Nos.  |
| 15.     | Gimlet 6 mm.                                                           | 31 Nos.  |
| 16.     | Bradawl                                                                | 31 Nos.  |
| 17.     | Scriber (Knurled centre position )                                     | 31 Nos.  |
| 18.     | Pincer 150 mm                                                          | 31 Nos.  |

## b) SHOP TOOLS, INSTRUMENTS AND MACHINERY

| Sr. No. | Names of the Items                            | Quantity   |
|---------|-----------------------------------------------|------------|
| 1.      | C- Clamp 200 mm, 150 mm and 100 mm            | 2 Nos each |
| 2.      | Spanner Adjustable 150 mm,300mm               | 2 Nos each |
| 3.      | Blow lamp 0.5 ltr                             | 1          |
| 4.      | Melting Pot                                   | 1          |
| 5.      | Ladel                                         | 1No        |
| 6.      | Chisel Cold firmer 25 mm X 200 mm             | 2          |
| 7.      | Chisel 25 mm and 6 mm                         | 2 Nos each |
| 8.      | Hand Drill Machine                            | 1          |
| 9.      | Portable Electric Drill Machine 6 mm capacity | 1          |
| 10.     | Pillar Electric Drill Machine 12 mm capacity  | 1          |
| 11.     | Allen Key                                     | 1 set      |
| 12.     | Oil Can 0.12 ltr                              | 1          |
| 13.     | Grease Gun                                    | 1 No       |
| 14.     | Outside Micrometer                            | 2          |
| 15.     | Motorised Bench Grinder                       | 1          |

| 16. | Rawl plug tool and bit                              | 2 set       |
|-----|-----------------------------------------------------|-------------|
|     | Pulley Puller                                       | 2           |
| 18. | Bearing Puller                                      | 2           |
| 19. | Pipe vice                                           | 4           |
| 20. | Thermometer 0 to 100 deg Centigrade                 | 1 No.       |
| 21. | Scissors blade 150 mm                               | 4 Nos.      |
| 22. | Crimping Tool                                       | 2 sets      |
| 23. | Wire stripper 20 cm                                 | 2 Nos.      |
| 24. | Chisel Cold flat 12 mm                              | 2 Nos.      |
| 25. | Mallet hard wood 0.50 kg                            | 4 Nos.      |
| 26. | Hammer Extractor type 0.40 kg                       | 4 Nos.      |
| 27. | Hacksaw frame 200 mm 300 mm adjustable              | 2 Nos.each  |
| 28. | Try Square 150 mm blade                             | 4 Nos.      |
| 29. | Outside and Inside Divider Calliper                 | 2 Nos.each  |
| 30. | Pliers flat nose 150 mm                             | 4 Nos.      |
| 31. | Pliers round nose 100 mm                            | 4 Nos.      |
| 32. | Tweezers 100 mm                                     | 4 Nos.      |
| 33. | Snip Straight and Bent 150 mm                       | 2 Nos.each  |
| 34. | D.E. metric Spanner                                 | 2 Nos.      |
|     | Drill hand brace                                    | 4 Nos.      |
| 36. | Drill S.S. Twist block 2 mm, 5 mm 6 mm set of 3     | 4 Set       |
| 37. | Plane, smoothing cutters 50 mm                      | 2 Nos.each  |
| 38. | Gauge, wire imperial                                | 2 Nos.      |
| 39. | File flat 200 mm 2nd cut                            | 8 Nos.      |
| 40. | File half round 200 mm 2nd cut                      | 4 Nos.      |
| 41. | File round 200 mm 2nd cut                           | 4 Nos.      |
| 42. | File flat 150 mm rough                              | 4 Nos.      |
| 43. | File flat 250 mm bastard                            | 4 Nos.      |
| 44. | File flat 250 mm smooth                             | 4 Nos.      |
| 45. | File Rasp, half round 200 mm bastard                | 4 Nos.      |
| 46. | Soldering Iron 25 watt, 65 watt, 125 watt           | 2 Nos.each  |
| 47. | Copper bit soldering iron 0.25 kg.                  | 2 Nos.      |
| 48. | Desoldering Gun                                     | 4 Nos.      |
| 49. | Hand Vice 50 mm jaw                                 | 4 Nos.      |
| 50. | Table Vice 100 mm jaw                               | 8 Nos.      |
| 51. | Pipe Cutter to cut pipes upto 5 cm. dia             | 4 Nos.      |
| 52. | Pipe Cutter to cut pipes above 5 cm dia             | 2 Nos.      |
| 53. | Stock and Die set for 20 mm to 50 mm G.I. pipe      | 1 set       |
| 54. | Stock and Dies conduit                              | 1 No.       |
| 55. | Ohm Meter; Series Type & Shunt Type                 | 2 Nos. each |
| 56. | Multi Meter (analog) 0 to 1000 M Ohms, 2.5 to 500 V | 2 Nos.      |
| 57. | Digital Multi Meter                                 | 6 Nos.      |
| 58. | A.C. Voltmeter M.I. 0 –500V A.C                     | 1 No.       |
| 59. | Milli Voltmeter centre zero $100 - 0 - 100$ m volt  | 1 No.       |
| 60. | D.C. Milli ammeter 0 -500m A                        | 1 No.       |
| 61. | Ammeter MC 0-5 A, 0- 25 A                           | 1 No. each  |
| 62. | A.C. Ammeter M.I. 0-5A, 0-25 A                      | 1 No. each  |
| 63. | Kilo Wattmeter 0-1-3 kw                             | 1 No.       |

| 64.  | A.C. Energy Meter, Single phase 5 amp. Three Phase 15 amp          | 1 No. each |
|------|--------------------------------------------------------------------|------------|
| 65.  | Power Factor Meter                                                 | 1 No.      |
| 66.  | Frequency Meter                                                    | 1 No.      |
| 67.  | Flux meter                                                         | 1 No.      |
| 68.  | Wheatstone Bridge with galvanometer and battery                    | 1 No.      |
| 69.  | Laboratory Type Induction Coil                                     | 1 No.      |
| 70.  | DC Power Supply 0-30V, 2 amp                                       | 1 No.      |
| 71.  | Rheostat                                                           | 1 No. each |
| , 11 | 0 -1 Ohm, 5 Amp                                                    |            |
|      | 0 -10 Ohm, 5 Amp                                                   |            |
|      | 0-25 Ohm, 1 Amp                                                    |            |
|      | 0- 300 Ohm, 1 Amp                                                  |            |
| 72.  | 1 Phase Variable Auto Transformer                                  | 1 No.      |
| 73.  | Battery Charger                                                    | 1 No.      |
| 74.  | Hydrometer                                                         | 1 No.      |
| 75.  | Miniature Breaker 16 amp (Raw Material)                            | 1 No.      |
| 76.  | Working Bench 2.5 m x 1.20 m x 0.75 m                              | 4 Nos.     |
| 77.  | Fire Extinguisher CO2, 2 KG                                        | 2 Nos.     |
| 78.  | Fire Buckets                                                       | 2 Nos.     |
| 79.  | Tachometer                                                         | 1 No.      |
| 80.  | Current Transformer                                                | 1 No.      |
|      | 415 Volt,50 Hz, CT Ratio 150 / 5 Amp, 5VA                          |            |
| 81.  | Potential Transformer                                              | 1 No.      |
|      | 415 Volt,50Hz, PT Ratio 11KV/ 110V, 10VA                           |            |
| 82.  | Growler                                                            | 1 No.      |
| 83.  | Tong Tester / Clamp Meter 0 – 100 amp. AC                          | 1 No.      |
| 84.  | Megger 500 volts                                                   | 1 No.      |
| 85.  | Contactor & auxiliary contacts 3 phase, 440volt, 16amp (Raw        | 1 No. each |
|      | Material)                                                          |            |
| 86.  | Contactor & auxiliary contacts 3 phase, 440 volt, 32 amp.          | 1 No. each |
|      | (Raw Material)                                                     |            |
| 87.  | Limit Switch (Raw Material)                                        | 1 No.      |
| 88.  | Rotary Switch 16 A (Raw Material)                                  | 1 No.      |
| 89.  | Load Bank 5 KW( Lamp / heater Type)                                | 1 No.      |
| 90.  | Brake Test arrangement with two spring balance 0 to 25 kg rating   | 1 No.      |
| 91.  | Knife Switch DPDT fitted with fuse terminals 16 amp (Raw Material) | 4 Nos.     |
| 92.  | Knife Switch TPDT fitted with fuse terminals 16 amp (Raw Material) | 4 Nos.     |
| 93.  | Voltage Stabiliser Input: 150 – 230 volt AC Output: 220 volt<br>AC | 1 No.      |
| 94.  | Motor-Generator (AC to DC) consisting of :                         | 1 No.      |
|      | Squirrel Cage Induction Motor with star delta starter and          |            |
|      | directly coupled to DC shunt generator and switch board            |            |
|      | mounted with regulator, air breaker, ammeter, voltmeter,           |            |
|      | knife blade switches and fuses, set complete with case iron        |            |
|      | and plate, fixing bolts, foundation bolts and flexible coupling.   |            |
|      | Induction Motor rating: 7 HP, 400V, 50 cycles, 3 phase DC          |            |
|      | Shunt Generator rating: 5 KW, 440V                                 |            |

| 95.  | Used DC Generators-series, shunt and compound type for overhauling practice                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 No. each |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 96.  | D.C. Shunt Generator with control panel,2.5 KW, 220V                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 No.      |
| 97.  | D.C. Compound Generator with control panel including<br>fitted rheostat, voltmeter, ammeter and breaker, 2.5 KW,<br>220 V                                                                                                                                                                                                                                                                                                                                                                                  | 1 No.      |
| 98.  | Diesel Generator Set with change over switch, over current<br>breaker and water-cooled with armature, star-delta<br>connections AC 3 phase, 5 KVA, 240 volt                                                                                                                                                                                                                                                                                                                                                | 1 No.      |
| 99.  | DC Series Motor coupled with mechanical load 0.5 to 2 KW, 220 Volts                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 No.      |
| 100. | DC Shunt Motor 2 to 2.5 KW, 220 volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 No.      |
| 101. | DC compound Motor with starter and switch 2 to 2.5 KW, 220 volts                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 No.      |
| 102. | Single phase Transformer, core type, air cooled<br>1 KVA , 240/415 V, 50 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 No.      |
| 103. | Three phase transformer, shell type oil cooled with all mounting 3 KVA, 415/240 V, 50 Hz, (Delta/Star)                                                                                                                                                                                                                                                                                                                                                                                                     | 1 No.      |
| 104. | Oil Testing Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 No.      |
| 105. | Hygrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 set      |
| 106. | <ul> <li>a. Cut out relays</li> <li>b. Reverse current</li> <li>c. Over current</li> <li>d. Under voltage</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | 1 No. each |
| 107. | <ul> <li>Starters for 2 to 5 H.P. A.C Motors</li> <li>a. Resistance type starter</li> <li>b. Direct on line Starter</li> <li>c. Star Delta Starter- manual, semi-automatic and automatic</li> <li>d. Auto Transformer type</li> </ul>                                                                                                                                                                                                                                                                      | 1 No. each |
| 108. | Motor Generator(DC to AC) set consisting of - Shunt Motor<br>with starting compensator and switch directly coupled to AC<br>generator with exciter and switch board mounted with<br>regulator, breaker, ammeter, voltmeter frequency meter, knife<br>blade switch and fuses etc. Set complete with cast iron bed<br>plate, fixing bolts, foundation bolts and flexible coupling.<br>Shunt Motor rating : 5 HP, 440V<br>AC Generator rating : 3-Phase, 4 wire, 3.5 KVA, 400/230<br>Volts, 0.8 pf, 50 cycles | 1 No.      |
| 109. | AC Squirrel Cage Motor with star delta starter and triple pole<br>iron clad switch fuse. 2 to 3 HP, 3-phase ,400 volts, 50 cycles                                                                                                                                                                                                                                                                                                                                                                          | 1 No.      |
| 110. | AC phase-wound slip ring Motor with starter and switch 5<br>HP, 400 volts, 3-phase, 50 cycles                                                                                                                                                                                                                                                                                                                                                                                                              | 1 No.      |
| 111. | A.C. Series type Motor with mechanical load <sup>1</sup> / <sub>4</sub> HP, 230V, 50 Hz                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 No.      |
| 112. | Single Phase Capacitor Motor with starter switch 1 HP 230 volt 50 cycles                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 No.      |
| 113. | Universal Motor with starter/switch 230 volt, 50 cycles <sup>1</sup> / <sub>4</sub> HP                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 No.      |
| 114. | Bath Impregnating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 No.      |
| 115. | Oven Stove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 No.      |
| 116. | Synchronous motor 3 Phase, 3 HP, 415V, 50Hz, 4 Pole, with accessories.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 no.      |

| 117. | Lux meter                                                | 1 no.  |
|------|----------------------------------------------------------|--------|
| 118. | Inverter-1 KVA with 12 V Battery                         | 1 No.  |
|      | Input- 12 volt DC,                                       |        |
|      | Output- 220 volt AC                                      |        |
| 119. | Domestic Appliances –                                    |        |
|      | a. Electric Hot Plate 1500 watt                          | 1 No.  |
|      | b. Electric Kettle, 1500 watts                           | 1 No.  |
|      | c. Electric Iron 1500 watts                              | 1 No.  |
|      | d. Immersion Heater 1500 watt                            | 1 No.  |
|      | e. A.C. Fan                                              | 1 No.  |
|      | f. Geyser (Storage type) 15 ltr minimum                  | 1 No.  |
|      | g. Mixture & Grinder                                     | 1 No.  |
| 120. | Washing Machine                                          | 1 No.  |
| 121. | Motor Pump set 1 HP, 1 Phase, 240 V                      | 1 No.  |
| 122. | Pin Type, shackle type & suspension type insulators (Raw | 2 Nos. |
|      | Material)                                                | each   |

## 7.2 LIST OF CONSUMABLES

| 1.  | Different types of electrical wires and cables | As required |
|-----|------------------------------------------------|-------------|
| 2.  | Different types of MCBs and ELCBs              | As required |
| 3.  | Different types of resistors                   | As required |
| 4.  | Different types of capacitors                  | As required |
| 5.  | Different types of inductors                   | As required |
| 6.  | Different types of transformers                | As required |
| 7.  | Different types of connectors                  | As required |
| 8.  | Different types of plugs and sockets           | As required |
| 9.  | Solder wire                                    | As required |
| 10. | Conduit pipes of various sizes                 | As required |
| 11. | Junction box                                   | As required |
| 12. | Distribution box                               | As required |
| 13. | Wooden boards/PVC boards                       | As required |

## 7.3 LIST OF RECOMMENDED BOOKS

- 1. Electrician Trade Practical, Sem-I (2 Years), Published by NIMI, Guindy, Chennai.
- 2. Electrician Trade Practical, Sem-II (2 Years), Published by NIMI, Guindy, Chennai.
- 3. Electrician Trade Theory, Sem-I (2 Years), Published by NIMI, Guindy, Chennai.
- 4. Electrician Trade Theory, Sem-II (2 Years), Published by NIMI, Guindy, Chennai.
- 5. Electrician Trade Theory, 2<sup>nd</sup> Year, Available in Hindi, Published by NIMI, Guindy, Chennai.
- 6. Electrician Trade Theory, 1st Year, Available in Hindi, Published by NIMI, Guindy, Chennai.
- 7. Electrician Trade Practicals, 1<sup>st</sup> Year, Published by NIMI, Guindy, Chennai.
- 8. Electrician Trade Practicals, 2<sup>nd</sup> Year, Published by NIMI, Guindy, Chennai.
- Basic Shop Practicals in Electrical Engineering (1<sup>st</sup> and 2<sup>nd</sup> Year) by M.L. Anwani, Published by Dhanpat Rai & Co. Pvt. Ltd., Delhi.
- 10. Basic Shop Practical by Mehta and Gupta, Published by Dhanpat Rai Publishing Company, Noida.
- 11. Basic Electrical Engineering (as per NIMI pattern) by M.L. Anwani, Published by Dhanpat Rai & Co. Pvt. Ltd., Delhi.
- 12. Basic Electrical Engineering by Mehta and Gupta, Published by Dhanpat Rai Publishing Company, Noida.
- 13. Elementary Electrical Engineering (as per NIMI pattern) by G.L. Marwaha, Published by Royal Book Depot (Regd.), Jalandhar City.

# 8. RECOMMENDATIONS FOR EFFECTIVE CURRICULUM IMPLEMENTATION AND EVALUATION

Since this skill development course is tailor made i.e. designed to meet the requirement of selected group of students for developing desired competencies in the given trade, it is pertinent for trainers to understand the design philosophy and arrange teaching-learning process using appropriate strategies. The following points may be considered by the trainer at the time of planning the training programme and subsequently during the implementation and evaluation stages:

- 1. There are multiple competencies in each unit. The course curriculum also includes a core unit on developing effective communication and entrepreneurial qualities. Each unit has specific competencies which trainees are expected to acquire at the end of the each unit. In order to achieve these competencies, the curriculum describes the practice tasks/exercises and related theoretical knowledge. Time has been allocated for both of these components.
- 2. The curriculum is designed for contact period of 35 hours per week but can be increased/changed as per convenience of the trainees and the trainer.
- 3. The trainer will assess the attainment of each specific learning outcome of the individual learner and will maintain record whether the trainee has achieved desired level i.e. Yes/No. In case of 'No' the trainee will work further to learn and attain the desired skills till s/he earns 'Yes'.
- 4. Each learning outcome will be assessed/tested by the trainee as per acceptable norms and record will be maintained for final certification. The final assessment of skills attained through practice jobs and acquisition of relevant knowledge should preferably be carried out appropriately.
- 5. The examiner will set an objective type question paper for theory examinations of each unit under final assessment. Preferably the question paper should aim at testing the understanding of basic principles and concepts by students and their applications.
- 6. The final assessment of practical skills development should not be limited to testing a few units, but should spread over to all the acquired skills in an integrated manner. It should ultimately assess the ability of the student to accomplish the desired learning outcomes of the programme.

## 9. LIST OF CONTRIBUTORS/EXPERTS

a) Following experts participated in the workshop to design curriculum of certificate programme in 'Electrician' with NSQF alignment for MRSPTU, Bathinda on 29-30 August, 2016 at NITTTR, Chandigarh.

| 1.  | Dr. Ashok Kumar Goel, Professor & Head, Electronics and                  |
|-----|--------------------------------------------------------------------------|
|     | Communication Engineering Department and Director, College               |
|     | Development Council, MRSPTU Campus, Dabwali Road, Bathinda,              |
|     | Punjab                                                                   |
| 2.  | Kanwar H.S. Dhindsa, Vice President, Mohali Industries Association,      |
|     | Mohali                                                                   |
| 3.  | Shri Parmod Kumar Verma, Prop. M/S Pee Kay Trading Co., Manimajra        |
| 4.  | Shri Anil Rana, M/S Rana & Rana Electrical Works, Sector 28,             |
|     | Chandigarh                                                               |
| 5.  | Shri Sukhvir Singh, Electrician Instructor, Govt. Industrial Training    |
|     | Institute, Patiala, Punjab                                               |
| 6.  | Shri Sarabjeet Singh, Electrician Instructor, Govt. Industrial Training  |
|     | Institute, Patiala, Punjab                                               |
| 7.  | Shri Ravinder Kaushal, Electrician Instructor, Govt. Industrial Training |
|     | Institute, Sector-28, Chandigarh                                         |
| 8.  | Shri ML Rana, HOD, Electrical Engineering Department, CCET               |
|     | (Diploma Wing), Sector-26, Chandigarh                                    |
| 9.  | Shri Mukesh Kumar, Electrical Instructor, CCET (Diploma Wing),           |
|     | Sector-26, Chandigarh                                                    |
| 10. | Mrs. Poonam Syal, Associate Professor, Electrical Engineering            |
|     | Department, NITTTR, Chandigarh                                           |
| 11. | Shri Hans Raj Sharma, Electrical Engineering Department, NITTTR,         |
|     | Chandigarh                                                               |
| 12. | Shri Vinod Kumar Sharma, Electrical Engineering Department, NITTTR,      |
|     | Chandigarh                                                               |
| 13. | Dr. AB Gupta, Professor & Head, Curriculum Development Centre,           |
|     | NITTTR, Chandigarh                                                       |
| 14. | Prof. SK Gupta, Associate Professor, Curriculum Development Centre,      |
|     | NITTTR, Chandigarh                                                       |
|     | Coordinator                                                              |
| L   |                                                                          |

b) Following experts participated in the workshop to review the curriculum of certificate programme in 'Electrician' for MRSPTU, Bathinda on 20 January, 2017 at NITTTR, Chandigarh:

| 1.  | Dr. MM Malhotra, Ex-Principal, TTTI, Chandigarh                                           |
|-----|-------------------------------------------------------------------------------------------|
| 2.  | Shri Arvind Dixit, Advance Technology, Sector 24, Chandigarh                              |
| 3.  | Dr. Ashok Kumar Goel, Director, College Development Council, MRSPTU, Bathinda, Punjab     |
| 4.  | Shri Kulmohan Singh, Ex-HOD, Electrical Engg., CCET (Diploma Wing), Sector 26, Chandigarh |
| 5.  | Shri HS Kalra, Ex-Principal, Govt. Industrial Training Institute, Sector-28, Chandigarh   |
| 6.  | Shri Rakesh Goel, Estate Officer, NITTTR, Chandigarh                                      |
| 7.  | Shri Pritpal Singh Aulakh, GZSCCET, Bathinda                                              |
| 8.  | Shri Naib Singh, Sr. Technician, GZSCCET, Bathinda                                        |
| 9.  | Shri Jagdip Singh, , Sr. Technician, GZSCCET, Bathinda                                    |
| 10. | Prof. PK Singla, Associate Professor, Curriculum Development Centre, NITTTR, Chandigarh   |
| 11. | Dr. AB Gupta, Professor & Head, Curriculum Development Centre, NITTTR, Chandigarh         |
|     | Coordinator                                                                               |